8 800 1000 163

звонок по России бесплатный

0
Нет товаров
 x 
Корзина пуста

Практически все современные кондиционеры, работающие в режиме включено/выключено, имеют как функцию охлаждения, так и функцию обогрева помещения. Однако возможность их работы ограничивается температурами воздуха на улице. В технической документации, как правило, указаны значения до -7 °C при работе на обогрев, и от + 16 °C до + 43 °C при охлаждении воздуха.

Работа кондиционера зимой

На фото: Работа кондиционера в режиме обогрева и в режиме охлаждения

Что же делать, если есть необходимость охлаждать помещение при более низких температурных значениях воздуха снаружи? В таком случае выручит установка специального зимнего комплекта. Он обеспечит надежную и эффективную работу кондиционера в прохладное время года. В зимний комплект входят: нагреватель картера компрессора, регулятор давления конденсации, нагреватель дренажа (только в том случае, если слив дренажа осуществляется на улицу).

Принцип работы кондиционера

Чтобы понять, зачем устанавливается зимний комплект на кондиционер, рассмотрим основные принципы его работы.

Специальное вещество – холодильный агент – циркулирует по замкнутому контуру. В теплообменник внутреннего блока он поступает достаточно холодным и при соприкосновении с воздухом охлаждает его, а сам нагревается. Именно в теплообменнике происходит процесс кипения холодильного агента. Именно кипение является первым из физических принципов, который используется для получения низких температур при работе кондиционера.

Принцип работы кондиционера в режиме охлаждения

На фото: Принцип работы кондиционера в режиме охлаждения

Далее газообразный (именно газообразный) холодильный агент поступает в компрессор, сжимается до высокого давления, в результате чего нагревается. В таком состоянии он поступает в теплообменник внешнего блока – конденсатор. Теплообменник обдувается наружным воздухом, а для более интенсивного теплообмена обдув осуществляется с помощью осевого вентилятора. Именно в этом теплообменнике происходит конденсация холодильного агента, и он из газообразного превращается в жидкий. Горячий холодильный агент обдувается наружным воздухом, отдает ему свою теплоту и за счет этого превращается в жидкий. Таким образом, второй физический процесс для получения низких температур, заложенный в работу кондиционера, – конденсация.

Жидкий, но еще достаточно теплый холодильный агент (средняя температура – плюс 40°C) нельзя подавать в испаритель, так как «холода» он не даст, поэтому холодильный агент поступает в дросселирующее устройство (в сплит-системах это капиллярная трубка или реже – терморегулирующий вентиль (ТРВ)). Именно здесь осуществляется третий физический процесс – дросселирование, – в результате чего резко понижается давление и температура холодильного агента, который затем поступает в теплообменник внутреннего блока и цикл повторяется. Все эти процессы можно проследить на диаграмме ℓgP-i для любого холодильного агента.

Процессы на диаграмме

Процессы:

1-2 – сжатие в компрессоре; 2-3 – охлаждение в теплообменнике внешнего блока; 3-4 – конденсация в теплообменнике внешнего блока; 4-5 – переохлаждение в теплообменнике внешнего блока; 5-6 – дросселирование в дросселирующем устройстве; 6-7 – кипение в теплообменнике внутреннего блока; 7-1 – перегрев в теплообменнике внутреннего блока.

Состав зимнего комплекта

Нагреватель картера компрессора. При отрицательных температурах наружного воздуха масло в компрессоре становится более вязким (густым), и при запуске электродвигатель компрессора может не справиться с этим, не запуститься и выйти из строя.

Также при низких температурах увеличивается растворимость холодильного агента в масле. Поэтому после запуска компрессора масло с растворенным в нем холодильным агентом начинает перемещаться по масляным каналам компрессора ко всем его поверхностям трения. В процессе работы внутренние части компрессора нагреваются и происходит выкипание холодильного агента из масла. В результате этого в масляном канале может образоваться газовая пробка, и произойти нарушения в системе смазки. Это приведет к заклиниванию компрессора.

Нагреватель

Нагреватель картер – это, если говорить простыми словами, небольшой гибкий ТЭН, которым обматывается нижняя часть компрессора (картер). При запуске компрессора в холодное время года автоматика ненадолго включает этот нагреватель. Происходит подогрев масла, что позволяет устранить вышеперечисленные негативные последствия.

Регулятор давления конденсации (регулятор числа оборотов вентилятора наружного блока). Быстрому охлаждению и конденсации холодильного агента в теплообменнике наружного блока способствуют температура уличного воздуха и интенсивность обдува этого теплообменника вентилятором. При понижении температуры за окном сильный обдув приводит к переохлаждению холодильного агента, по причине чего он далее не сможет вскипеть в теплообменнике внутреннего блока и перейти в газообразное состояние. Это, в свою очередь, приводит к попаданию жидкого холодильного агента в компрессор, и последний может выйти из строя.

Конечно, перед компрессором может стоять отделитель жидкости и в самом компрессоре предусмотрена защита от попадания жидкого холодильного агента. Это может спасти прибор от небольших, временных нарушений, но при постоянной такой работе поломка неизбежна.

давление конденсации

Чтобы предотвратить такие последствия, при работе сплит-системы на охлаждение при отрицательных температурных значениях наружного воздуха устанавливают регулятор давления конденсации, который с понижением температуры начинает уменьшать обороты двигателя осевого вентилятора наружного блока. Этим обеспечиваются постоянное давление и температура конденсации, что не позволяет холодильному агенту сильно переохлаждаться. В конечном итоге при достижении критической температуры наружного воздуха вентилятор перестает вращаться вообще.

Такое изменение обдува теплообменника наружного блока уже предусмотрено в конструкции инверторных сплит-систем. Именно поэтому дополнительная установка регулятора давления конденсации в инверторных системах невозможна. Простыми словами в инверторные кондиционеры зимний комплект НЕЛЬЗЯ установить. А вот в кондиционеры, работающие по схеме включено/выключено, зимние комплекты установить МОЖНО.

Подогрев слива дренажа. При работе сплит-системы на охлаждение на теплообменнике внутреннего блока неизбежно образуется конденсат, который стекает в поддон, откуда он должен удаляться на улицу или в канализацию. В первом случае часть дренажного трубопровода будет находиться снаружи здания, в том числе зимой, при отрицательной температуре. В этом случае стекающая вода будет замерзать, создавая ледяную пробку, и ее удаление из внутреннего блока прекратится. Со временем поддон переполнится, и вся вода будет вытекать внутрь помещения.

Подогрев дренажа

Чтобы этого избежать, внутрь дренажного трубопровода прокладывается нагреватель (условно говоря, кусок теплого пола). Именно нагреватель дренажа не позволит замерзнуть воде и создать в нем ледяную пробку. В случае вывода конденсата в канализацию весь дренажный трубопровод будет находиться постоянно при положительной температуре и дренажный нагреватель не обязателен.

Как установить

У большинства компаний-производителей имеются свои особенности подключения зимних комплектов к кондиционерам, поэтому устанавливать их самостоятельно не рекомендуется. Такая установка чревата некорректной работой, а чаще всего выходом из строя кондиционера. Поэтому покупку и монтаж зимнего комплекта следует делать у компании, которая имеет в штате специалистов с соответствующей высокой квалификацией для осуществления такого типа работ.

Особенности комплектации

Зимний комплект для бытовых и полупромышленных сплит-систем обеспечивает работу оборудования до -25°C (-30°C). Стоит отметить, что для работы оборудования при более низких температурах зимний комплект имеет другую комплектацию.

Выводы:

1. Зимний комплект устанавливается только для обеспечения работы кондиционера на охлаждение при отрицательных температурах наружного воздуха.

2. Зимний комплект можно установить только в кондиционерах, которые работают по принципу включено/выключено.

3. В кондиционерах, работающих по инверторному принципу регулирования, зимний комплект не устанавливается.

4. Если слив дренажа происходит в канализацию, то можно исключить из зимнего комплекта подогрев дренажа.

5. Установку зимнего комплекта рекомендуется доверять только сертифицированным специалистам, и не следует это делать самому.

 

Модульные схемы в организации систем центрального кондиционирования продолжают доказывать свою привлекательность. Объективно такие схемы получили наибольшее распространение в промышленности, а также при решении задач специального назначения, например при кондиционировании информационных центров, где необходима максимальная надежность оборудования. Системы кондиционирования информационного центра включает функцию резервирования, которая обеспечивает снижение влияния рисков, связанных с выходом из строя. Также открыта возможность расширения производительности системы кондиционирования с учетом перспективного увеличения нагрузки.

Постепенно модульные схемы в организации систем кондиционирования стали приобретать популярность в общественных и административных зданиях премиум класса и больницах, поскольку на таких объектах надежность оборудования играет важную роль.

В данной статье представлены 7 причин-критериев для выбора модульных схем систем центрального кондиционирования. Также в статье приведен пример организации системы центрального кондиционирования на базе модульных чиллеров Dantex. Наиболее наглядно преимущества модульных схем организации системы центрального кондиционирования можно увидеть в многофункциональных зданиях. В таких зданиях под одной крышей могут быть размещены офисы, кинотеатры, медицинские центры, торговые павильоны и.т.д. Назначение каждого помещения многофункционального здания определяется на этапе следующем после сдачи здания в эксплуатацию, а на этапе проектирования и строительства неизвестны. В течение всего времени эксплуатации помещения могут задаваться в аренду различным арендаторам. Тепловая нагрузка каждого помещения также может изменяться. Например, тепловая нагрузка торговых павильонов может увеличиться при увеличении пропускной способности.

На рисунке ниже показана схема системы центрального кондиционирования на базе модульных чиллеров с воздушным охлаждением конденсатора и фанкойлов Dantex. Система кондиционирования включает 4 модульных чиллера Dantex производительностью 185 кВт, воздухообрабатывающие агрегаты - фанкойлы. Чиллеры и фанкойлы подключены к системе BMS.

  Система кондиционирования многофункционального здания на базе модульных чиллеров

Рисунок 1. Функциональная схема системы кондиционирования многофункционального здания

Модульные чиллеры подключены к гидравлическому контуру параллельно и работают в режиме ведущий/ведомый. Главный чиллер управляет работой ведомых в зависимости от изменения тепловой нагрузки. Каждый чиллер оснащен 6-ю контурами циркуляции хладагента и 6-ю компрессорами производства Copeland.

Водяные чиллеры Dantex в модульной системе центрального кондиционирования офисного центра

Причина №1: Как уже было сказано ранее, важным фактором в организации систем центрального кондиционирования является надежность. Интеллектуальная система автоматизированного управления производит непрерывный контроль параметров работы устройств модульных чиллеров в режиме реального времени. При возникновении любой аварийной ситуации, связанной с возможным прекращением работы компрессора, вентилятора, либо другого устройства, АСУ немедленно включает в работу незадействованный модуль. При организации систем центрального кондиционирования мы рекомендуем использовать принцип замещения: При возможном прекращении работы одного холодильного контура, его мощность должна быть замещена незадействованной. То есть суммарная производительность группы модульных чиллеров должна быть больше необходимой на величину, равную производительности одного контура циркуляции хладагента.

Причина №2: Наиболее существенным критерием выбора того или иного решения является уровень эксплуатационных характеристик оборудования.  Снижения уровня энергопотребления, повышение точности регулирования температуры воды в гидравлическом контуре – это первоочередные задачи, которые ставятся на этапе проектирования любой системы центрального кондиционирования. Суммарно наша система центрального кондиционирования включает 4 модуля–чиллера, оснащенных 6-ю спиральными компрессорами со ступенчатым регулированием производительности. Следовательно, в целом наша система имеет 24 ступени регулирования производительности. АСУ чиллеров осуществляет включение или выключение компрессоров таким образом, чтобы их холодопроизводительность наиболее точно соответствовала тепловой нагрузки здания. Такой подход, с одной стороны, снижает количество запусков компрессоров, а также уменьшает количество задействованных в работе компрессоров, уменьшая тем самым энергопотребление системы центрального кондиционирования. С другой стороны, многоступенчатая структура построения холодильных систем повышает точность регулирования температуры воды, а, следовательно, и температуры воздуха в рабочих зонах кондиционируемых помещений.

Причина №3: Возможность расширения системы центрального кондиционирования с учетом перспективного увеличения тепловой нагрузки.

Важной особенностью многофункциональных зданий является возможное увеличение тепловой нагрузки. Такое увеличение может быть связано с изменением эксплуатационных особенностей различных помещений, повышение производительности источников тепла, например, серверов, а также другими факторами. Использование модульных схем позволяет производить увеличение мощности системы центрального кондиционирования за счет подключения новых чиллеров к существующему гидравлическому контуру. Система автоматизированного управления позволяет вносить изменения в конфигурацию с учетом расширения.

Чиллеры Dantex для решения вопроса холодоснабжения промышленных предприятийПричина №4: Снижение воздействия системы кондиционирования на несущие конструкции здания.

Применение нескольких модулей в системе центрального кондиционирования дает возможность создать равномерное распределение агрегатов по кровле в соответствие с архитектурными особенностями здания таким образом, чтобы исключить точечное воздействие. Как показала практика, равномерное распределение чиллеров по кровле здания также уменьшает уровень воздействия вибрации и шума.

Причина №5: Снижение затрат по монтажу и транспортировке чиллеров.

Вследствие того, что система центрального кондиционирования многофункционального здания включает несколько модулей малой холодопроизводительности (185кВт), их перевозка, а также перемещение на кровлю, производится значительно проще, чем аналогичные действия с одним чиллером, который имеет большой вес и габаритные размеры. Для транспортировки и подъема на крышу нет необходимости в использовании крупнотоннажных машин и кранов.

Причина №6: Широкие возможности в области управления.

Высокоинтеллектуальная САУ позволяет производить управление модульных чиллеров с помощью локального или дистанционного пульта управления, а также персонального компьютера, размещенного внутри здания, или удаленного компьютера, который подключен к Интернет. Также возможно подключение модульных чиллеров к единой системе управления зданием с помощью открытых протоколов ModBus, LonWork, Backnet. Широкие возможности управления позволяют сокращать эксплуатационных расходов, связанных с техническим обслуживанием, а также повышают надежность системы центрального кондиционирования.

Причина №7 Экологическая безопасность, малая стоимость утилизации.

Экологическая безопасность и охрана окружающей среды является абсолютным приоритетом компании Dantex. Поэтому во всех системах центрального кондиционирования, выпускаемых под брендом Dantex используются экологически безопасные хладагенты, воздействие на природу которых является незначительным.

Модульные чиллеры Dantex с воздушным охлаждением конденсатора представлены моделями производительностью 30, 65, 130, 185, 250кВт. Dantex выпускает чиллеры с компрессором Scroll постоянной производительности и с компрессором Digital Scroll с плавным регулированием производительности. Модульные чиллеры могут быть подключены к единому гидравлическому контуру. В этом случае они образуют группу чиллеров. Работа ведомых модулей координируется главным. Все модульные чиллеры Dantex имеют функцию реверсирования холодильного цикла и могут не только охлаждать жидкость, но также и нагревать ее.

Что такое класс энергопотребления? Класс энергопотребления зависит от потребления блоком энергии. Класс энергопотребления кондиционера делится на семь категорий (A , B, C, D, E, F, G). Более экономные кондиционеры относятся ближе к категории А, менее экономные к категории G. Класс энергопотребления также обозначается цветовой маркировкой, соответствующей классу. Пользователь, в ниже приведенной таблице, с легкостью сможет определить класс энергопотребления соответствующий кондиционеру. Есть две категории определения энергопотребления кондиционера. Коэффициент EER выражает класс энергопотребления кондиционера при охлаждении, а коэффициент СОР выражает класс энергопотребления кондиционера при нагреве.

Коэффициент энергоэффективности EER

Это количество энергии, необходимое блоку кондиционера для выработки холода. Чем выше коэффициент EER, тем выше эффективность использования энергии.

Коэффициент энергоэффективности COP

Выражает количество энергии, необходимое кондиционеру для выработки тепла в режиме обогрева. Чем выше класс энергопотребления, тем меньше электроэнергии необходимо кондиционеру для выполнения функции обогрева.

EER COP SEER SCOP

Новые характеристики энергоэффективности: SEER и SCOP

Ранее производители использовали коэффициенты энергетической эффективности EER и COP. Для их измерения были стандартизированы значения температуры наружного воздуха: +35 ºС — для режима охлаждения и +7 ºС — для режима нагрева, а измерение проводились при максимальной мощности системы. Такой подход имел несколько недостатков. Во-первых, указанные температурные точки не отражают реальные условия эксплуатации систем в Европе. Во-вторых, преимущества систем с инверторным приводом компрессора, способных работать с частичной производительностью, выделялись недостаточно ярко, и поэтому, иногда недооценивались покупателями.

Для компенсации приведенных недостатков было принято решение производить измерения эффективности при 4 различных температурах наружного воздуха. Более того, для режима нагрева принимается во внимание климатическая зона, в которой предполагается эксплуатировать оборудование. С этой целью введены 3 зоны, имеющие разное распределение градус-часов: теплая, средняя и холодная. Дополнительно принимается во внимание повышение эффективности системы с инверторным приводом при работе с частичной нагрузкой, а также электропотребление в неосновных режимах: «температура в помещении достигнута», «система выключена, но находится в режиме готовности» и др.

Новый стикер-указатель энергоэффективности

Новый стикер введен в обращение в Европе 1 января 2013 г. Он дает покупателям информацию в унифицированном виде для объективного сравнения энергетических и шумовых характеристик систем охлаждения и отопления.

Вместо коэффициентов EER и COP на новом стикере производитель указывает сезонные значения энергоэффективности: SEER и SCOP, что более точно отражает реальную картину эксплуатации климатического оборудования в течение года в условиях европейского климата.

Основной разницей в построении VRF систем и систем «Чиллер-фанкойл» является способ передачи тепловой энергии. В мультизональной системе происходит непосредственный процесс испарения хладагента в теплообменниках внутренних блоков, тогда как в системе с чиллером сначала охлаждается теплоноситель (жидкость), который в последствие циркулирует через внутренние блоки.

VRF Dantex

Таким образом, в первом варианте отсутствуют промежуточные теплообменные процессы, что положительно влияет на показатели энергоэффективности. Отрицательным моментом является то, что в мультизональных системах строго ограничены длины магистралей и перепады высот между наружным и внутренними блоками, в то время как в системе чиллер-фанкойл эти параметры зависят от подобранного насосного оборудования, то есть практически не ограничены.

В связи с этим, у системы чиллер-фанкойл появляется преимущество в виде высокого коэффициента нелинейности нагрузок в случаях, когда значительную часть теплопритоков составляет поступление солнечной радиации через световые проемы, так как чиллер обычно ставится на все здание. В этом случае общая мощность чиллера будет меньше суммарной мощности наружных блоков VRF системы.

Второе основное отличие заключается в конструктивных решениях. В наружных блоках VRF используются компрессоры с переменной производительностью, что позволяет регулировать производительность системы с очень высокой точностью. Также, в мультизональной системе происходит непрерывный обмен данными между внутренними и наружными блоками, что также помогает поддерживать именно ту холодопроизводительность, которая необходима в данный момент времени.

В системе чиллер-фанкойл ситуация противоположная: холодильный агрегат не связан с фанкойлами и выбирает свою производительность по температуре теплоносителя (воды), поступающей в теплообменник. Регулировка производительности компрессоров, в подавляющем большинстве чиллеров, ступенчатая, что приводит к колебаниям температуры теплоносителя и как следствие перерасходу электроэнергии, так как производительность выбирается менее точно и с большей инерционностью.


Третье отличие это уровень комфорта конечного потребителя при использовании систем кондиционирования на базе чиллера или VRF. Фанкойл представляет из себя довольно простое устройство, без какой-либо прогрессивной системы управления. Как правило, производительность фанкойла регулируется клапаном на магистрали теплоносителя (воды), который имеет 2 положения: полностью открыт и полностью закрыт. Такой способ регулировки неизбежно приводит к колебанию температуры внутри помещения, особенно при частичной загрузке.

Во внутренних блоках мультизональных систем кондиционирования установлены датчики температуры и электронный расширительный вентиль, который регулирует расход хладагента через испаритель в широком диапазоне и с высокой точностью.Более того, в зависимости от температуры в помещении, автоматика внутреннего блока плавно регулирует скорость вращения вентилятора, что позволяет очень точно поддерживать температуру в помещении. Также, в VRF довольно просто организовать диспетчеризацию и центральное управление системами, т.к. эти модули подключаются к существующей линии связи. Как правило, внутренние блоки имеют также меньший уровень звукового давления, чем фанкойлы. Таким образом, приоритетность применения в том или ином случае в большей степени зависит от потребностей заказчика, т.к. в конечном итоге обе системы выполняют задачу по поддержанию температурных параметров в помещении, просто делают это с разной точностью и уровнем комфорта.

Просуммировав основные плюсы и минусы обоих систем, получаем следующее:

Плюсы и минусы мультизональной системы VRF

Рассмотрим плюсы и минусы мультизональной системы VRF, оценивая преимущества и недостатки.

Преимущества

  1.  Высокая энергоэффективность;
  2. Точное поддержание заданной пользователем температуры, автоматическое плавное регулирование оборотов вентилятора внутреннего блока в зависимости от нагрузки;
  3. Высокая надежность, ротация компрессоров и несколько систем на большой площади;
  4. Меньший уровень звукового давления как внешних, так и внутренних блоков.
  5. Удобные решения по диспетчеризации и центральному контролю;
  6. Минимальное количество проектных расчетов и относительно простая установка;
  7. Относительная простота обслуживания и эксплуатации;
  8. Возможность работы на обогрев помещений без удорожания и усложнения системы.

Недостатки

  • Высокая стоимость;
  • Необходимость остановки системы в случае изменения конфигурации внутренних блоков и высокая стоимость данной операции;
  • Ограничение длин трасс и перепадов высот между внутренними и наружными блоками;
  • Большая общая холодопроизводительность систем, чем у чиллер-фанкойл, которая в последствие снижается до необходимого уровня (высокая стоимость).

 

Плюсы и минусы мультизональной системы чиллер-фанкойл

Рассмотрим плюсы и минусы мультизональной системы чиллер-фанкойл, оценивая преимущества и недостатки.

Преимущества

  1. Меньшая начальная стоимость;
  2. Возможность снижения общей номинальной мощности чиллера за счет нелинейности теплопритоков во всем здании;
  3. Практически неограниченные возможности по изменению конфигурации внутренних блоков (фанкойлов) и невысокая стоимость данной работы;
  4. Отсутствие ограничений перепадов высот и длин магистралей;
  5. Относительно простой монтаж, требующий меньшей квалификации персонала.

Недостатки

  • Больший расход электроэнергии;
  • Большое количество проектных расчетов, требующих очень высокой квалификации проектировщиков;
  • Большое количество дополнительных элементов в системе:насосы, запорная арматура, промежуточные теплообменники и т.д.;
  • Высокая дискретность регулирования производительности, как у чиллера, так и у фанкойлов;
  • Большее количество трудозатрат и сложность эксплуатации и обслуживания, так как дополнительно появляется необходимость промывки гидравлической системы и теплообменников, прочистки грязевых фильтров, проверки рабочих параметров насосов и др.

Категории

Лучшие товары